4月10日晚,人类首张黑洞照片“冲洗”完成,多国科学家在比利时布鲁塞尔、智利圣地亚哥、中国上海和台北、日本东京、美国华盛顿6个地方同步发布,爱因斯的坦相对论又一次宣告胜利。
关于黑洞,大家关心的那些问题,国家天文台研究员苟利军给出了答案。
一、黑洞是什么?
理论上,黑洞是爱因斯坦广义相对论预言存在的一种天体。它具有的超强引力使得光也无法逃脱它的势力范围。
不过,黑洞的概念最早出现在1798年。拉普拉斯根据牛顿力学计算,一个直径为太阳250倍而密度与地球一样的天体,其引力足以捕获其发出的光线而成为一个暗天体,也称为“暗星”。
1915年,爱因斯坦广义相对论诞生。1916年,史瓦西给出了广义相对论的第一个严格解释,他发现所有的星体都存在一个史瓦西半径,如果星体的实际半径比它的史瓦西半径要小,那么它就会变成一个黑洞。比如,太阳的史瓦西半径是3千米。
1939年,奥本海默根据广义相对论证明当天体的质量大于临界质量时,引力坍塌后不可能达到任何的稳态,只能形成黑洞。黑洞有两种,轴对称的克尔黑洞和球对称的史瓦西黑洞。
1974年,霍金证明黑洞具有与其温度相对应的热辐射,称为“黑洞辐射”。黑洞的质量越大,温度越低,发射过程就越慢。
二、给“黑洞”拍照,有什么难度?
最开始的8个望远镜分别是:南极望远镜;位于智利的阿塔卡马大型毫米波阵;位于智利的阿塔卡马探路者实验望远镜;位于墨西哥的大型毫米波望远镜;位于美国亚利桑那州的亚毫米波望远镜;位于夏威夷的麦克斯韦望远镜;位于夏威夷的亚毫米波望远镜;位于西班牙的毫米波射电天文所的30米毫米波望远镜。
要保证所有8个望远镜都能看到这两个黑洞,观测窗口期非常短暂,每年只有大约10天时间,2017年只有4月5日到4月14日合适。
苟利军说,这些望远镜都是在亚毫米波波段,通常需要在海拔比较高的地方来减少大气中水汽对于亚毫米光子的影响。比如说位于智利的阿塔卡马大型毫米波阵的海拔就有5000多米。据了解,该望远镜耗资140亿美元,灵敏度是目前单阵列当中最高的。
三、2017年拍的照片,为何要“冲洗”这么长时间?
虚拟的大望远镜阵列并非直接拍出了黑洞的图像,而是给出了许多数据,必须经历复杂的计算机处理过程。
因为有8个不同的望远镜,每一个望远镜收到的数据量都非常大,苟利军说,总的加在一起差不多有10个PB。现在一般的笔记本电脑的硬盘是1TB,这些望远镜为此次观测接收的数据,可以装满1万多个笔记本。
此外,在2017年4月的联合观测以后,研究团队还进行了一些数据收集和校准的工作。苟利军说,科学家需要对望远镜接受的光子进行定标,确保不同望远镜接收到的光子是来自于同一时刻,最后才能将所有图像进行叠加。其中还有些缺失或模糊的部分,需要科学家们拼图。
光既有波动性又有粒子性,观测到的每一时刻波动性非常强,所以要对每一时刻接受的相位进行相位校对。苟利军给了一个形象的比喻。“比如我们在拍照片的时候,手晃动的话,相片会模糊掉。这跟照相机的工作模式有关系,照相机曝光时间如果非常短的话,比我们手晃动速度快很多的时候才能拍清楚,这就是为何要用高速摄像机拍摄运动员奔跑的形象。如果用普通照相机拍摄,会得到一个模糊的照片。”
四、这次观测对于科学研究有哪些意义?
苟利军说,因为是第一次看到黑洞,所以满足了我们对黑洞模样的好奇。另外从科学的角度还可以提供很多信息,帮助我们了解气体在黑洞内区真正的运动状态。
“之前根据研究,知道黑洞周边一些很壮观的现象,比如喷流等,还知道了黑洞的质量、转动等性质。但是,之前没有很好的方式去了解,虽然有一些方法,但可能有误差,也不知道是不是准确。因为不同的模型得到的结果往往偏差很大,相差几倍在天文学中是很正常的。有了这幅图片,科学中一些与黑洞有关的悬而未决的问题,就有了解决的可能。”
结语:看到黑洞并没有现实意义,最重要的是这是人类智慧的胜利。从引力波探测到双黑洞并合开始,黑洞已经从假说变为现实,与第一次拍摄到黑洞照片相比较,由于黑洞本身仍然不可见,因此我们依然看到的是外围场景。但是这一次观测到的图像与理论预期以及数值拟合几乎一致,宣告了爱因斯坦相对论的又一次胜利。
天文学家将从此对黑洞有了更进一步的认识,同时可以使用这个工具对其他黑洞进行测量、观测、理解,扩大了对我们所生存的宇宙的认知。
就像人工智能,作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,创造新的强大引擎,重构生活、消费、服务、支付、分配、物流、制造、军事、社会管理等全领域的各个环节,引发经济结构的重大变革,深刻改变人类生产生活方式和思维模式。作为“万物智能”时代的领军者,麦仑拥有世界顶尖、超强的AI原创技术,核心团队兼具从0到1的原创研发能力和从1到N部署实施的丰厚产业经验。 麦仑的使命是用AI技术和人文精神为世界赋能,让AI之光照亮世界!